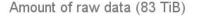
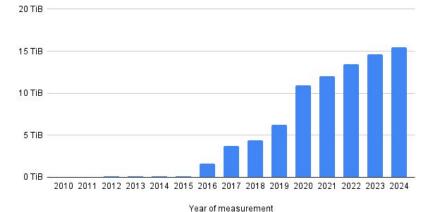
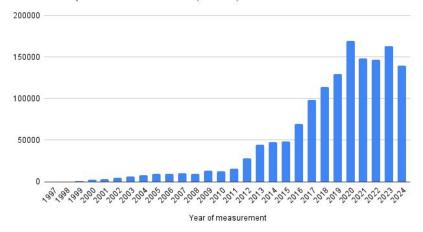


New developments at CLU

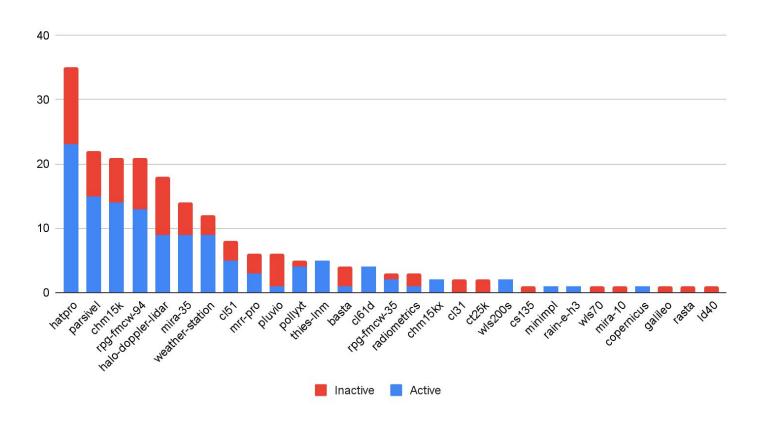

Simo Tukiainen, Ewan O'Connor, Tuomas Siipola, Niko Leskinen


ACTRIS Data Centre – CLU unit Finnish Meteorological Institute

CCRES workshop 2024-11-07


Cloudnet data volume

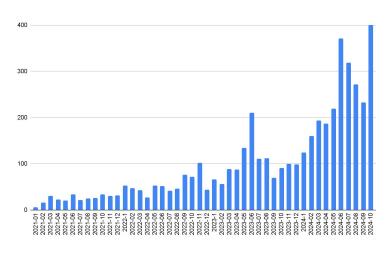
- ★ 0.8 M product files
- ★ 0.6 M model files
- ★ 15.5 M raw files
- ★ 83 TiB of raw data (67 % RPG *.LV0 files)

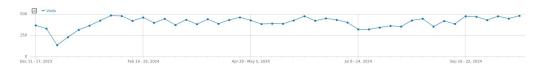


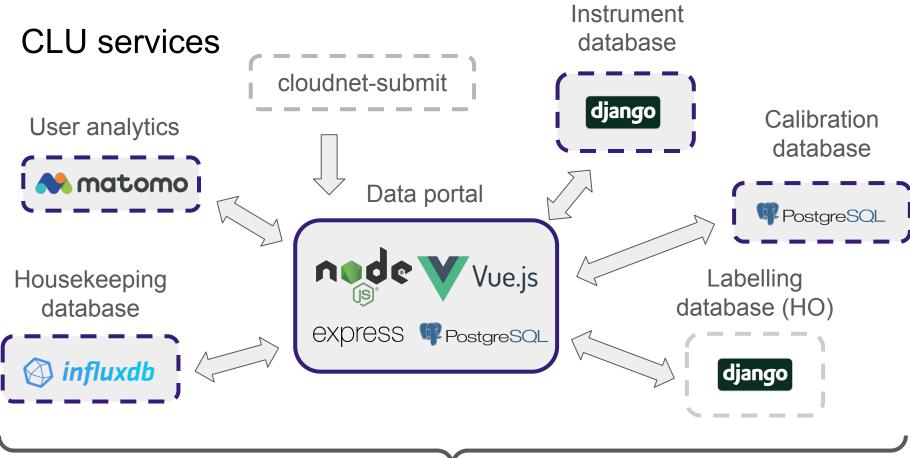
Number of product / model files (1.45M)

Cloudnet instruments

Data submission

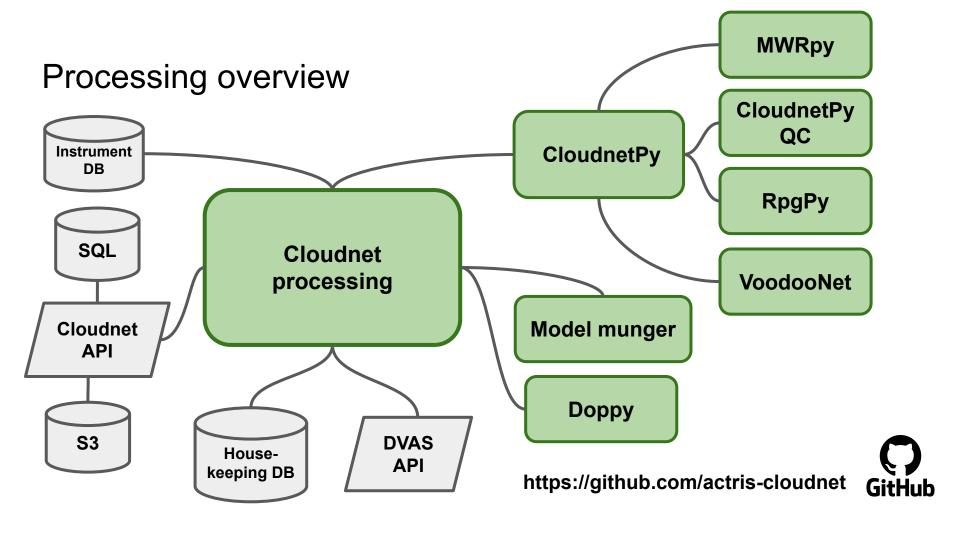

- 2-step submission (metadata + data) over HTTP
- Personal credentials
 - Permissions to submit from site X, Y, Z...
 - Contact CLU unit for credentials: <u>actris-cloudnet@fmi.fi</u>
- Recommended tool: cloudnet-submit
 - https://github.com/actris-cloudnet/cloudnet-submit
 - o pip install cloudnet-submit

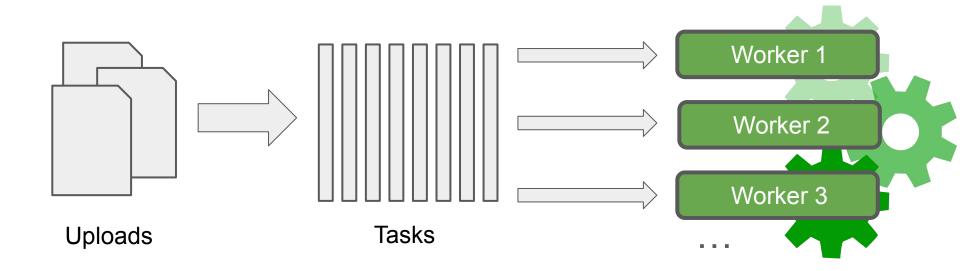

Questions, comments, problems??


cloudnet.fmi.fi user statistics

Monthly unique IPs downloading data

Weekly data portal visits





Processing queue

Move from traditional cron jobs to modern queue/worker architecture.

Processing is now more flexible, scalable and real-time.

Processing queue

Total tasks: 25

Show failed tasks

Туре	Status	Site	Date	Product	Instrument / model	Due in
process C	running	payerne	2024-10-25	lidar	MeteoSwiss CHM 15k	
process	running	payerne	2024-10-25	mwr	MeteoSwiss HATPRO-G5	
process	pending	payerne	2024-10-25	mwr-l1c	MeteoSwiss HATPRO-G5	
process	created	kenttarova	2024-10-25	lidar	FMI CL61-B	1 min
process	created	kenttarova	2024-10-25	weather-station	FMI weather station	2 min
process	created	kenttarova	2024-10-24	weather-station	FMI weather station	2 min
process	created	vehmasmaki	2024-10-25	radar	FMI MIRA-35S	2 min
process	created	payerne	2024-10-25	doppler-lidar	MeteoSwiss WLS200S	2 min
process	created	payerne	2024-10-25	doppler-lidar-wind	MeteoSwiss WLS200S	2 min
process	created	chilbolton	2024-10-25	doppler-lidar	UL HALO	2 min
process	created	chilbolton	2024-10-25	doppler-lidar-wind	UL HALO	2 min
process	created	evora	2024-10-25	mwr	UÉ HATPRO-G4	2 min
process	created	evora	2024-10-25	mwr-l1c	UÉ HATPRO-G4	2 min
process	created	hyytiala	2024-10-25	lidar	UH CL61	2 min
process	created	cabauw	2024-10-25	doppler-lidar	KNMI WLS200S	4 min
process	created	cabauw	2024-10-25	doppler-lidar-wind	KNMI WLS200S	4 min
process	created	evora	2024-10-25	lidar	UÉ CHM 15k	4 min
process	created	granada	2024-10-25	categorize		7 min
process	created	kenttarova	2024-10-25	categorize		7 min
process	created	chilbolton	2024-10-25	categorize		7 min
process	created	cabauw	2024-10-25	categorize		8 min
process	created	hyytiala	2024-10-25	categorize		9 min
process	created	evora	2024-10-25	categorize		10 min
process	created	lindenberg	2024-10-25	categorize		12 min
process	created	neumayer	2024-10-25	categorize		13 mir

Site page

Send us an description of your site!

The description should focus on the cloud remote sensing component, not the whole station or ACTRIS National Facility.

Summary Products

Hyytiälä is a historical forestry station in Finland, operated by the University of Helsinki. Hyytiälä hosts the Station for Measuring Ecosystem-Atmosphere Relations II (SMEAR II), one of the world's most comprehensive surface in situ observation sites in a boreal forest environment. The instrumentation covers aerosol dynamics, atmospheric chemistry, micrometeorology, weather monitoring, cloud remote sensing and ecophysiology of trees growing in the urban environment.

The cloud remote observations in Hyytiälä started in 2012 on a campaign basis. In 2014, the second ARM Mobile Facility (AMF2) was deployed to Hyytiälä, as a part of Biogenic Aerosols-Effects on Clouds and Climate experiment (Petäiä et al., 2016), Since then, continuous observations of cloud and precipitation are carried out at the site.

The cloud profiling site is located on the lake Kuivajärvi shore. It is about 30 m below the base of the SMEAR II mast, where most aerosol measurements are performed.

Instruments

The site has submitted data from the following instruments in the last 30 days:

* UH CL61 depolarisation lidar ceilometer

UH HATPRO-G5 scanning microwave radiometer

% FMI Parsivel23 disdrometer

Hu weather station weather station

References

Petäjä et al. (2016). BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bull. Amer. Meteor. Soc., 97(10), 1909-1928. https:// doi.org/10.1175/BAMS-D-14-00199.1.

Links

- · Hyytiälä home page
- · Hyytiälä in ACTRIS data portal
- SMEAR II (Hyvtiälä) in ACTRIS labelling database
- . SMR in GAW Station Information System

Coordinates 61.844°N, 24.287°E

Altitude 150 m a.s.l.

Contact

Dmitri Moisseev @

Data citation

Currently the following people are included:

- Instrument PI(s)
- ACTRIS NF PI (from labelling)
- Additional site-specific people

Recent example from the wild:

Ebell, K., Maturilli, M., Ritter, C., and O'Connor, E.: Custom collection of categorize, classification, droplet effective radius, ice effective radius, ice water content, and liquid water content data from Ny-Ålesund between 1 Sep 2021 and 30 May 2022, ACTRIS Cloud remote sensing data centre unit (CLU), https://doi.org/10.60656/2498625552e84611, 2024.

Instrument overview

TROPOS CHM 15k-x (LACROS)

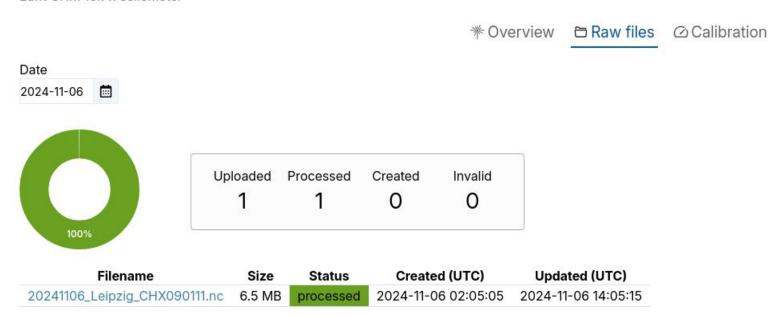
Lufft CHM 15k-x ceilometer

Locations

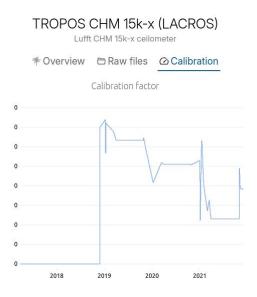
Total size

```
2023-03-29 - now
                         Leipzig
2022-12-11 - 2024-03-05 Eriswil
2022-06-17 - 2022-12-01 Leipzig
2018-11-27 - 2021-11-30 Punta Arenas
2017-03-24 - 2017-03-24 Limassol
```

Total size of uploaded raw files


Year

Raw file status


TROPOS CHM 15k-x (LACROS)

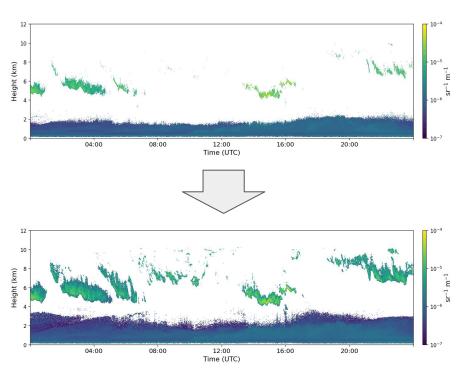
Lufft CHM 15k-x ceilometer

Calibration

Calibration data is now visible on instrument page:

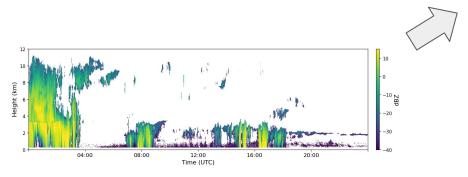
Uni Köln HATPRO-G5 (JOYHAT)

RPG-Radiometer Physics HATPRO microwave radiometer

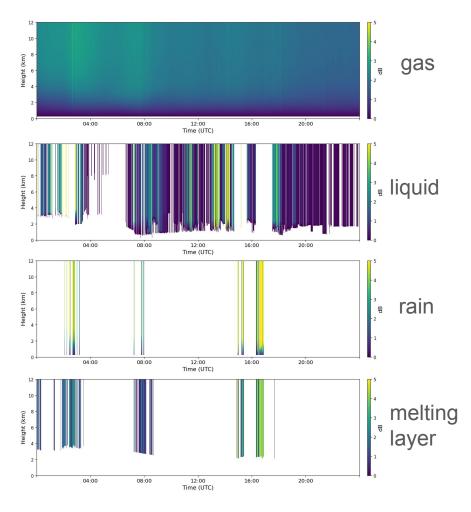

Retrieval coefficients

Date	Coefficient files	Updated at
2024-01-01	tbx_deb_rt00_90_00.nc tbx_deb_rt00_90_07.nc tbx_deb_rt00_90_09.nc hpt_deb_rt00_90.nc iwv_deb_rt00_90.nc tbx_deb_rt00_90.nc tbx_deb_rt00_90_08.nc tbx_deb_rt00_90_05.nc lwp_deb_rt00_90_05.nc lwp_deb_rt00_90_nc tbx_deb_rt00_90_02.nc tpt_deb_rt00_90_03.nc tpt_deb_rt00_90_03.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_11.nc tbx_deb_rt00_90_11.nc tbx_deb_rt00_90_13.nc tbx_deb_rt00_90_13.nc tbx_deb_rt00_90_13.nc tbx_deb_rt00_90_13.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_10.nc tbx_deb_rt00_90_10.nc	2024-08-08 13:10:02 UTC

Lidar background screening

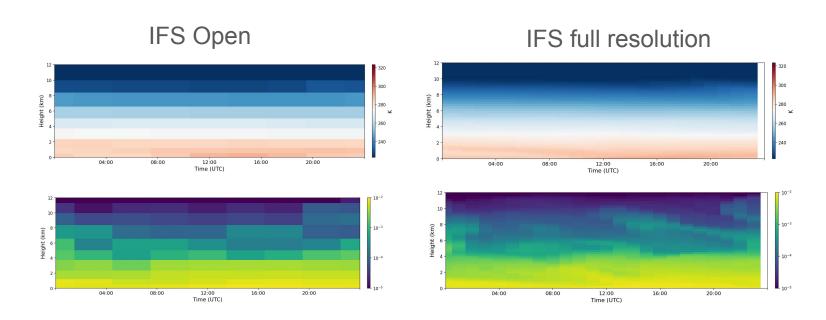

Harmonized screening for all ceilometers using improved method first introduced for CL61.

2019-04-03 Lindenberg CHM 15k



Radar attenuation

- Revised corrections gas and liquid water attenuation
- Implemented new corrections for rain and melting layer attenuation

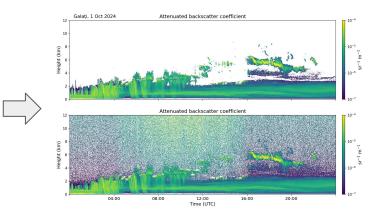


Leipzig 10.10.2024

New model processing pipeline "Model munger"

- https://github.com/actris-cloudnet/model-munger/
- ECMWF IFS open implemented as Cloudnet fallback model

CloudnetPy CLI



User-friendly interface for trying / debugging CloudnetPy

usage: cloudnetpy [-h] -s SITE -d DATE -p PRODUCTS [--input INPUT] [--output OUTPUT] [--plot | --no-plot] [--show | --no-show] [--dl | --no-dl]

For example:

pip3 install cloudnetpy cloudnetpy -s galati -p lidar -d 2024-10-01 —show

Multiple instruments of same type

- Which one to use for geophysical products?
- Now possible to define "nominal" instrument for a site (e.g. labelled or otherwise preferred instrument)

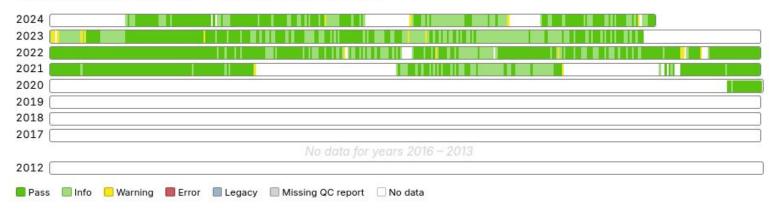
Site A (no nominal instrument)

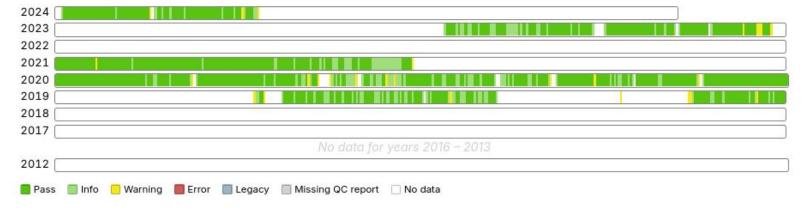
Use MIRA by default

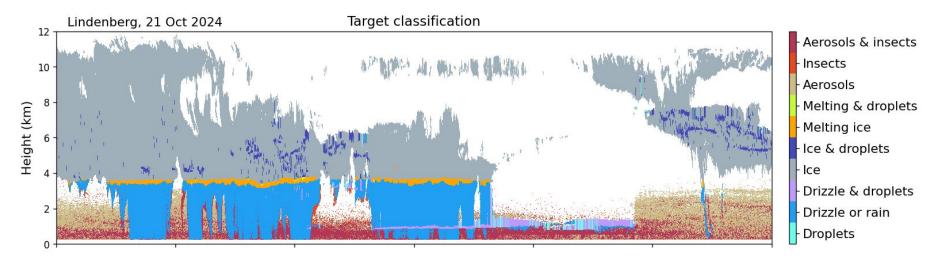
RPG

Site B (RPG as nominal instrument)


MIRA


Radar product


Use RPG (if available)



Product quality / availability - Radar (ESA RPG-FMCW-94-DP)

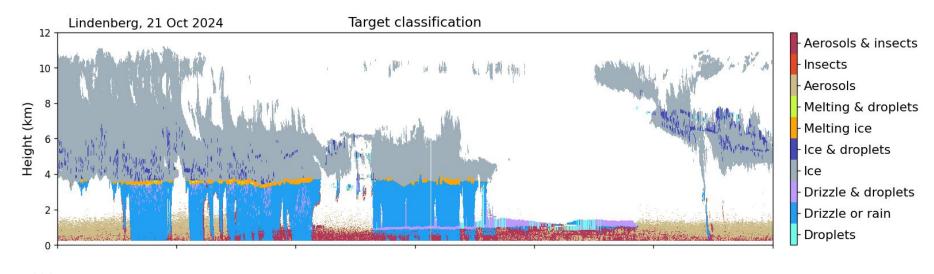
Instrument configuration example

Lidar

- Lufft CHM 15k
- Vaisala CL61
- HALO StreamLine

Microwave radiometer

- RPG HATPRO-G5
- Radiometrics MP-3000A


Cloud radar

- METEK MIRA-35
- RPG-FMCW-94-DP

Disdrometer

- OTT Parsivel²
- Thies LPM

Instrument configuration example

Lidar

- Lufft CHM 15k
- Vaisala CL61
- HALO StreamLine

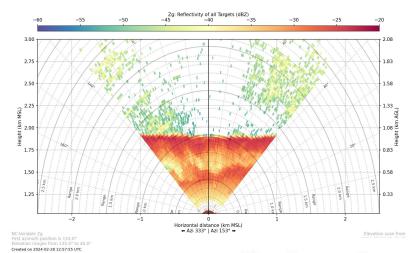
Microwave radiometer

- RPG HATPRO-G5
- Radiometrics MP-3000A

Cloud radar

- METEK MIRA-35
- RPG-FMCW-94-DP

Disdrometer

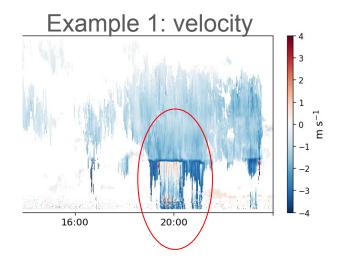

- OTT Parsivel²
- Thies LPM

Radar scanning products

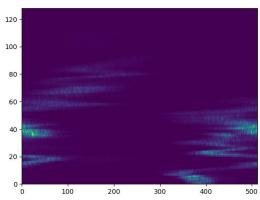
Currently only zenith-pointing radar product.

Planning to receive radar scan data from sites:

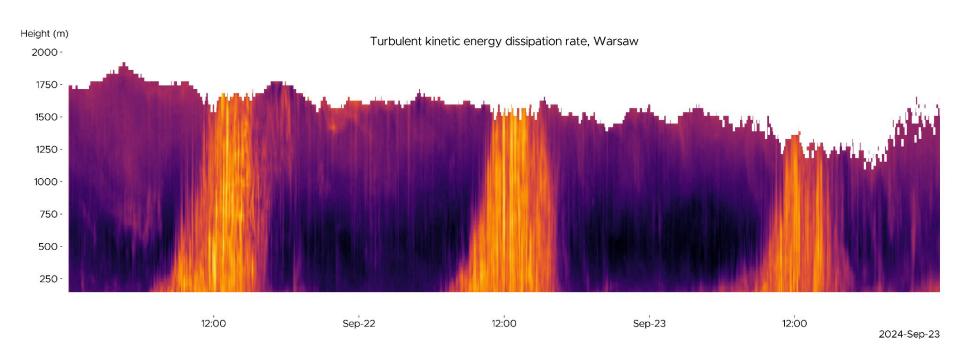
- Calculate winds (similarly to Doppler lidar wind product)
- Merged product with Doppler lidar?
- File format? (CfRadial2 or Cloudnet convention)
- Which other products are possible and wanted from scan data?


Elevation scan from 2024-02-28 12:48:45 to 2024-02-28 12:50:19

© ETH Zurich, ERC project CLOUDLAB


Radar spectra dealiasing

Folding is a common problem especially with RPG cloud radars.


→ Investigating operational methods for dealiasing cloud radar spectra.

Example 2: spectra

Doppler lidar winds / turbulence, work in progress

Roadmap for future developments

- Level 3 / model evaluation
- Improved methods (e.g. ML classification)
- New products (e.g. Doppler lidar)
- New instruments (e.g. MiniMPL)
- Instrument calibration and monitoring
- Landing pages for campaigns? Now we only have "campaign sites"
- ARM data ??