

UNIVERSITY OF COLOGNE ACTRIS CCRES

Microwave Radiometer operational services MWR data processing and monitoring

Tobias Marke, Bernhard Pospichal

CCRES/CLU Workshop, Matera – November 7th, 2024

News concerning processing

- Output from processing software **MWRpy¹** is used for Cloudnet products
- Stability indices can be derived (requires STA*.ret retrieval file from RPG); products are not tested yet
- Spectral consistency check possible for off-zenith observations
 - INS*.ret retrieval files are derived for instrument characteristics and preferred over SPC*.ret
- Faster processing due to optimizations by CLU

Search data Visualise data

Location

Select		Ŧ
Show all sites		
Data		
Date		
Current year	Last 30 days	Today

Product

ACTRIS

CCRES

Show date range

Select

View in visualization search \rightarrow

Results Found 17 results

	Data object		Date
	MWR single pointing from Bucharest		2024-10-22
~	MWR single pointing from Cabauw		2024-10-22
	MWR single pointing from Cabauw		2024-10-22
2	MWR single pointing from Chilbolton		2024-10-22
	MWR single pointing from Galați		2024-10-22
2	MWR single pointing from Hyytiälä	0	2024-10-22
	MWR single pointing from Jülich		2024-10-22
	MWR single pointing from Lampedusa		2024-10-22
	MWR single pointing from Leipzig		2024-10-22
	MWR single pointing from Limassol		2024-10-22
	MWR single pointing from Lindenberg		2024-10-22
	MWR single pointing from Mindelo		2024-10-22
	MWR single pointing from Munich		2024-10-22
	MWR single pointing from Ny-Ålesund		2024-10-22
	MWR single pointing from Palaiseau		2024-10-22

🔍 volatile

MWR single pointing from Palaiseau

22 October 2024

Instrument	IPSL HATPRO-G5		
Location	Palaiseau, France		
Date	2024-10-22		
Size	115.3 MB		
Last modified	2024-10-23 00:30:09 UTC		
Quality check	Some info, see report.		

«	¢	1	2	>	>>

Quality Control

Quality flags (per channel) derived for Level 1 data (also provided in product files)

• Contains checks of TB values, system parameters, and spectral consistency

Quality Control

Quality flags (per channel) derived for Level 1 data (also provided in product files)

Contains checks of TB values, system parameters, and spectral consistency

Long term quality assessment

 $\square \mathsf{RFS}$

- Checks availability / quality of data and whether SOPs are being followed
- Detection of malfunction possible in operational use
- Statistical analysis and reports are planned in ReOBS (labelling step 1b)

CCRES/CLU Workshop, Matera – November 7th, 2024

Quality Control

Quality flags (per channel) derived for Level 1 data (also provided in product files)

• Contains checks of TB values, system parameters, and spectral consistency

Long term quality assessment

- Checks availability / quality of data and whether SOPs are being followed
- Detection of malfunction possible in operational use
- Statistical analysis and reports are planned in ReOBS (labelling step 1b)

Centralized housekeeping data (HKD) monitoring

- Synchronizes HKD data with CCRES data center
- Includes instrument type specific thresholds and alert settings
- Helps operator to take action and increase uptime of instruments

08/28 00:00

0.001 K

0.0005 K

0 K

- receiver 1

08/26 18:00

08/27 00:00

08/27 06:00

08/27 12:00

08/27 18:00

Status of receiver 1

Temperature of receivers

323.7 K

323.69 K

323.68 K

323.67 K

7

323.35 K

323.34 K

323.33 K

323.32 K

323.31 K

- receiver 2

08/28 12:00

CRES

Observation minus Background (O-B) Monitoring of TB

- Idea: Identify faulty calibrations or larger drifts/jumps in brightness temperatures
- **Method**: Simulate TB using radiative transfer with a "background" (radiosonde, model), during liquid water cloud free scenes, and compare to observations
- **Difficulties**: Attribution of differences due to uncertainties (model, radiative transfer, etc); small drifts are likely within expected O-B spread

CCRES/CLU Workshop, Matera – November 7th, 2024

Radome Monitoring

- Work is done in collaboration • with DWD
- Idea: evaluate "time-to-dry" • of radome after rain events
- Uses spectral consistency • retrieval (comparison of retrieved and observed TBs)
- Helps with instrument • maintenance (radome change)

Retrieval Development - ACTRIS

- **Goal**: derive homogeneous data streams focused on clouds/water cycle and retrieve quantities with a high temporal resolution (for atmospheric variability):
 - Statistical retrieval method (Neural Network including auxiliary information)
 - Retrieval training with **ERA5 climatology** (comparison with radiosondes)
 - Rosenkranz 2024 absorption model for radiative transfer
 - MWR + IRT **synergy retrieval** for LWP
 - Include 89 GHz channel of cloud radar / LHUMPRO for improvements in LWP retrieval

Retrieval Development - E-Profile

Collaboration for a better cross network compatibility

- Enables stations to participate in both networks
- Similar file types and data format (including metadata, quality flags)
- Common SOP (with minimum requirements of both networks), including:
 - Calibration procedures and intervals
 - Scanning strategy

Differences in generating products (retrieval method)

- Focus: nowcasting and data assimilation into weather forecast models
- Physical retrieval approach: TROPoe (optimal estimation)
- Lower temporal resolution (10 min)

RFS

Retrieval Development - Comparison

- PANAME (PAris region urbaN Atmospheric observations and models for Multidisciplinary rEsearch) campaign is used as **testbed**
- Comparison of statistical and physical retrievals at different sites

CCRES/CLU Workshop, Matera – November 7th, 2024

Summary and Outlook

- MWRpy is operationally used in the Cloudnet processing chain
- Methods for long term quality assessment in development
 - Collaboration with IPSL (Jean-François) to generate statistics/reports in ReOBS for labelling step 1b
- Retrieval development is starting and will benefit from inter-comparison exercises
- MWR expert meeting planned
- Contact: actris-ccres-mwr@uni-koeln.de (Tobias Marke, Bernhard Pospichal)

Thank you

CCRES/CLU Workshop, Matera – November 7th, 2024