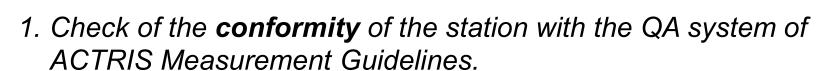
Audit procedure and plan; Round robins



Objectives of the Audit

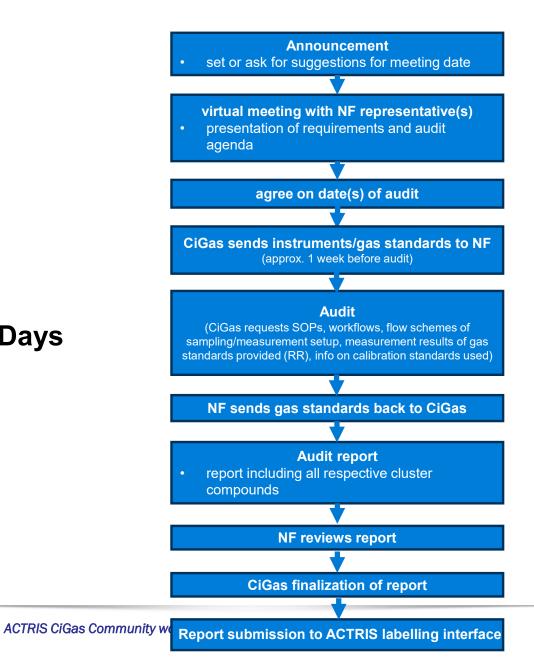
According to the Measurement Guidelines for NO_x and VOCs^{*}, ACTRIS (2018), section 7.2 "Audit Procedures":

2. Check of the **conformity** of measurement of test gases with targeted values within the **DQOs**.

Preconditions for a CiGas Audit

NF has successfully completed Labelling step 1a

- Conformity check of the reported instrument setup based on the questionnaire
- ➤ DG has confirmed labelling step 1a (TC recommendation, RICommapproval, provision of a committment letter)
- Upgrades have been fully implemented
- NF submits data to the ACTRIS data base



Audit workflow

On-site audit: 3 Days

Audit procedures

1. Instrument and installations

- All parts of the sampling and instrument set-up
- Calibration and zero gas systems
- Overall equipment of the station

2. Training and operation

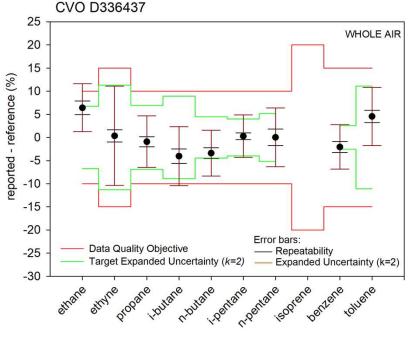
- Training of operators and instructions at the station (SOP)
- Measurement of intercomparison through RR cylinders (VOC)

3. Documentation

- QA and QC data
- Logbooks
- SOP

4. Evaluation of data

- Calibration, zero gas, target gas, and standard addition data
- Data delivery
- Results from intercomparison exercises (RR cylinders)
- Uncertainty evaluation



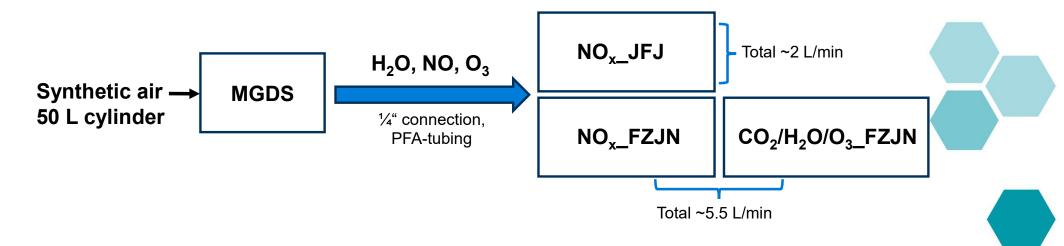
Round-Robin Procedure for NMHCs

1 x NPL NMHC Standard (4 ppb in N₂) 2 x NMHC Mixtures in amb. Air

ACTRIS CiGas Community work

Audit for NO_x

- Zero evaluation of station instruments
- Dry calibration (40 min cycle each for zero, NO, NO₂ via GPT)
- Humid calibration (40 min cycle each for zero, NO, NO₂ via GPT)
- Humidity dependence NO+O₃ of NO_x instruments
- Influence of ozone through the inlet sampling line of the station (via NO+O₃)
- Ambient air measurement (overnight)



Audit for NO_x

MGDS \rightarrow FZJ system to introduce dry/humidified air, calibration gas and O₃ NO_x \rightarrow Airyx ICAD-NO_x monitor; Airyx ICAD-HONO/NO₂ monitor Picarro G2301 \rightarrow H₂O, CO₂ 2BTech 211 monitor \rightarrow O₃

NPL D180545 NO cylinder NO: 9.99 +- 0.10 μmol/mol CO₂: 50.43 +- 0.25 mmol/mol

Audit plan

2024	2025		2026+
Jungfraujoch → Nov.	Pallas	→ Spring	6 – 8 NFs
	SMEAR II → Spring		
	SIRTA	→ Summer	
	NN	→ Autumn	

