

ACTRIS - CAMS2_21a

Near-Real-Time provision of aerosol and reactive species from ACTRIS and EMEP observation networks: WP2 update

Thérèse Salameh, Aurélien Chauvigné, Marc-Antoine Drouin, Lorna Foliot, Valérie Gros, Lionel Constantin, Stefan Reimann

Atmosphere Monitoring

7 November 2024, CiGas community meeting – ACTRIS Week 2024

CAMS2_21a Updates from WP2

Atmosphere Developing procedures for high-quality VOC concentrations in NRT

Monitoring

VOCs of interest – testing phase: isoprene, benzene, toluene, acetaldehyde and acetone Two main types of techniques TD-GC-FID-MS and PTR-MS

Pilot sites - 4 future ACTRIS NF: Jungfraujoch (Switzerland), Monte Cimone (Italy), Hyytiälä (Finland) and <u>SIRTA (France)</u> to be extended in a second step to additional NFs (<u>Beromuenster</u> (Switzerland) etc.)

Deliverables:

- To define the required specification for NRT data transmission of VOC data including automatic quality control, traceability & develop procedure and software for L0
- To perform real-scale testing of software at selected sites,
- To provide training to data operators for the implementation and application of NRT procedures,

Near Real Time data delivery GC-MS- EMPA

Atmosphere Monitoring

- Empa sites
 - Jungfraujoch: code implemented, data flow running and tests ongoing
 - Beromunster: planned
- NRT scripts
 - NRT data upload from gcwerks: code implemented
 - QA on areas/rt:
 - Concentration calculations: code implemented
 - QA on concentrations:

code implemented code implemented code implemented

opernicus

Dataflow for GC

Atmosphere Monitoring

A

CiGas

PTRMS NRT status

Atmosphere Monitoring

CiGas

Code to process the PTR-MS data from cps to pmol/mol developed in Python and available on a git repository : <u>https://gitlab.in2p3.fr/ipsl/sirta/ptr-ms/ptrms_lib</u>

Received from SIRTA station:

Concatenated zip file every hour.

Processing (blank correction, running mean, automatic QC):

- Every 3 hours.
- 1 output file per hour.
- blank saved for each file.

Continuous hourly outputs from 2023-12-13 to date

PROGRAMME OF THE EUROPEAN UNION

PTRMS LevelO

Atmosphere Monitoring

Source code for PTRMS level0 shared between contributors : <u>https://www.icare.univ-lille.fr/depot/ACTRIS/CAMS/software/actris_ptrms_converter-v0.1.0.zip</u>

Template for level0 with Sirta as a pilot site, with metadata, PTRMS vocabulary, flags,...published in EBAS and updated with more metadata: <u>https://ebas-</u><u>submit.nilu.no/templates/VOC/PTR-MS_lev0</u>

Update of the template with **VOCUS PTRMS** metadata; RT submission will use condensed raw data 1 min resolution (when there are fluxes measured at high time resolution); update of the vocabulary with new mass group numbers

PROGRAMME OF THE EUROPEAN UNION

€CEC

Quality Assessment : GC and PTRMS

Atmosphere Monitoring

CiGas

- X-Y correlations
 - Flag points outside of cloud
- Extreme values detection
 - Flag values outside of statistical range
- Retention time check (GC)
 - Ensure that the expected peak was integrated

WP2Next Steps

Atmosphere Monitoring Continue bug-fixing the current NRT pipeline (for GC)

- Define a concept for PTRMS templates (Quad ToF from Ionicon/VOCUS) to be implemented at additional sites: ongoing
- Processing software to be adapted to work with PTRMS level 0 file in EBAS NASA Ames:
 - ✓ level 0 creation and SIRTA implementation : done
 - Iev0 processing to concentrations : done
 - ✓ link to NILU's server: done
- For GC and for PTRMS: Procedure and software operational for L0 data preparation and submission
- Additional pilot sites: for PTRMS (Hyytiälä Finland); for GC (Beromunster)

CAMS2_2a WP3

Deliverables:

- (CiGas and NILU): report comparing the data processing schemes of EMEP, ACTRIS and EEA data with existing datasets.
- (CiGas): report which demonstrates the extra value of the ACTRIS data processing scheme for NOx using NOx and NOy datasets measured at the background site station of Hohenpeissenberg.
- (NILU): Demonstrate the capability of providing EMEP NO2 and ozone data quality assured using statistical tests on a RRT schedule by selecting 1-2 stations with instrumentation, and assess the improvements as compared to data with less stringent quality assurance.

Milestones:

- M11: (CiGas and NILU): Description of NOy and NOx measurements at Hohenpeissenberg
- M11: Selection of **test sites** for demonstrating EMEP and ACTRIS NOx ozone RT data delivery.

During the 2022 Campaign, the NABEL NO_2 data with Mo converter exceed the CiGas MIRO NO_2 data, when the values are low and the relative contribution of NOy is high.

CiGas Audit in November Inspect capacities for RRT Nox data delivery

Hohenpeissenberg, Monte Cimone, Košetice

Status

Defines responsibilities and Data levels:

Until 2022:

Stations submitted corrected level 0 or level 2 data or the TC corrected data

From 2023:

The Stations only submit uncorrected data. The TC does the corrections

NO2 data measured with Molybdenum converters cannot be accepted

Data Management Plan

NOx implementation of ACTRIS In Situ data levels:

Level Oa: data as provided by instrument, amount fraction and raw counts, flags applied.

Level 1a: calibrations applied, original time resolution, flags applied.

Level 2: hourly averages, offset correction applied, not sample line corrected.

Level 3: generated directly from level 1, offset correction applied, hourly averages, sample line corrected.

NF

Status

Time from entry inlet line to entry of converter: 4.3 s Duration of stay in converter or bypass line: 0.2 s Duration of stay in converter: 2.5 s Converter temperature: 308.15 K

<u>converter_efficiency, %pressure, hPa, Location=inlet,</u> <u>Matrix=instrumenttemperature, K, Location=inlet,</u> <u>Matrix=instrument</u>

NO_x Data Level 2

O₃ Data level 1 (calibrated)

Met Data level 0 (raw)

Can this be done in NRT ?

The Status (CAMS2-21a WP3)

CiGas

NRT Data Submission- The NOx Perspective The Status (CAMS2-21a WP3)

Where do we go from here ?

Python – based Software Programmed by Benjamin Winter (FZJ) GUI Data flagging is possible (automatic / maunal) Data can be sent to Data centre β-Version tested at Hohenpeissenberg

NRT Data Submission- The NOx Perspective The status

Connection to instrument database Connection to calibration database

Python – based Software Programmed by Benjamin Winter (FZJ) GUI Data flagging is possible (automatic / maunal) Data can be sent to Data centre β-Version tested at Hohenpeissenberg

